Scratch-building CN’s 40′ Wood End Bunker Reefers PT:5 [Underslung Charcoal Heaters & their Piping]

Small update coming at y’all- and while it’s small, the process behind this was large.

Last night, in the final hours of my 20s, I installed the underslung charcoal heaters and their piping onto Reefer cars’ underframe.

The heaters were resin copies I cast of a certain manufactures underslung charcoal heaters that I could not purchase individually from a kit. I cut a notch out of the previously installed Z-bracing and then affixed the heater right to the car floor with CA.

The piping was .032” Tichy PB Wire threaded through the car floor into small holes drilled into the heaters. I made the “T” joint by first filing the ends of the cut wire totally flat, then used masking tape to hold the wires together in the desired formation on top of some scrap wood. Flux was applied, and solder was liberally applied to the joint. I cleaned it up with 400 grit sandpaper, rubbing alcohol and a wire brush.

The bracing/strapping that holds the heaters to the car floor on the prototype will be installed after the final under-frame installation is made


One of the first things I had to consider before taking on this project (almost a year ago !!!) was the availability of certain parts that would be rather difficult to scratch build- the big concerns being the roof hatches and the underslung heaters.

Well, I was able to find suitable hatches to use (Details West RH-1003). Still, underslung heaters were going to be a different story.

I tried emailing a certain resin kit manufacture multiple times to see if I could purchase some of their cast underslung heaters that they include in their Reefer kits but received no response.

Second, I took to Shapeways to see what I could find. I placed an order with a certain shop for some heaters that looked promising, but when I received them- though they were nice, they just didn’t look as nice as the other manufacturer’s part. And that just couldn’t do.

So, as a last resort, I raided a couple of unbuilt 8 Hatch Reefer kits I have in the closet, got a casting kit at Great Hobbies and cast my own resin copies of the underslung heaters; something I’d never done before.

I’ll spare the casting process, but I’m happy with how they turned out. And while it was a minor headache to not just buy the parts I wanted, this turned out to be a great learning experience, and I’ve learned a new skill.

[A note on ethics: I wouldn’t condone doing something like this (even for personal use only) if the parts in question were still in print and/or readily available. You should always support hobby shops and manufacturers whenever possible. Don’t be a dink.]

Scratch-building CN’s 40′ Wood End Bunker Reefers PT:4 [Rivets & installation of the centre sills, z-bracing and crossmembers]

Well, it’s been longer than I would have liked between updates.

This whole COVID-19 mess has certainly affected every one of us, and us in the aviation industry, especially in terms of employment. My employer has placed myself and roughly 15,000 other of my union brothers and sisters on off duty status, which has admittedly been hard to comprehend given how quickly all of this has erupted.

Without getting too personal, I’ll just say this whole mess really hasn’t left me with much motivation to write. However, as the dust of our new reality begins to settle, I’m starting to feel a little better. That said, this post isn’t nearly as beefy as I’d like it to be, and I must apologize.


Progress has continued on the reefers, and I’m really starting to get excited about where this project is headed. The fishbelly sills have been riveted with MicroMark surface decals and installed along with the z-bracing, cross-bearers, cross-members and train line.

IMG_1447.jpeg

After installing the z-bracing (which I put on the wrong way somehow! whoops!), I used my UMM saw to cut through the bracing and installed the cross braces and cross members. I went with 4×4″ Evergreen for the cross members and used my Cricut Maker to cut the cross bearers from .030″ Evergreen sheet. The cross bearers will receive a 1×6″ cap over them after the floor is glued into the cars.

60753719966__51C9BE7E-28A4-4EF0-A7AB-C59859C6DA26

With the sill, z-bracing and supports installed I figured now would probably be a good time to install the tramline as it needs to be threaded through the cross-bearers. I bent .020″ Tichy PB wire directly over top of the scaled down general arrangement drawings, cut it into two pieces and installed it into the car with CA. This was repeated for both cars.

IMG_1448

Another view of the under frame.

Next time, I intend to make a drill jig for the side and end grab irons using the engraving tip on my Cricut Maker. I plan to design the jig in 2D with CAD, engrave it onto a .010″ brass sheet (or a soda can), cut it out, fold it against a vice and then use my pin vice to punch the holes before using it to drill out for the grabs.

We’re all facing a lot of stress right now… I encourage you to take some time and work on or run your models. We all need to get our minds off of things. Please wash your hands and stay home.

CM

Special delivery… (70 Tonner decals)

Just wanted to poke my head in and give a little mail-day update..

Backstory: Last fall I designed and 3D printed a accurate footboard assembly for my long-stalled Kaslo 70 Tonner project. This was a detail that had been bothering me for some time and I just couldn’t seem to get it right by scratch-building with styrene. This 3D printed part gets me over that hump, but in order to finish the project I still needed decals…

Receiving the test parts from Shapeways was the inspiration I needed to finally get off my behind and get decals made so I could finish the project.

STR21235a.001.aa.cs

CNR #38 at the Moncton, NB diesel shops. CSTM Collection.

Shortly before Christmas I began talks with Bill Brillinger from PDC.ca to make a custom set of decals for the ‘simplified’ second iteration of the green and gold livery the CNR 70 Tonners wore. I mailed him some reference material and to work he went.

After a few weeks of back and forth, I was very excited to see the PDC.ca envelope full of 70 Tonner decals arrive in my mailbox today.

IMG_1274.jpeg

As you can see, the decals turned out beautifully. Bill is an absolute joy to work with and he nailed what I was looking for. The decal set will do three locomotives with the ability to label any unit on the roster, although not all of them got this paint job.

While my super-detailed 44 Tonner will see lots of action on the layout, 70 Tonners were just as common and I’m excited to finish this project so I can run 70T #38 in mixed train service.

CM

Vernon River Co-Op Warehouse: a study on shared building plans.

IMG_1210

The former Vernon River Co-Op Warehouse built in 1947. July 2013. Chris Mears photo, used with permission.

Since the very conception of this layout, a mystery has been at the back of my mind. That is the mystery of the Vernon River Co-Op Warehouse.

Perhaps not as much of a mystery as a minor annoyance. You see, the photos I have are only but a tease only providing partial views of how this building looked while it was still rail-served.

There is one fact working for me: the building still stands today- rails to trails use it as a workshop. Having an accurately sized model will not be a problem; however, its freight doors and roof vents have been removed, and the roof and siding have been replaced.

I’ve reached out to local area Facebook groups to find a better photo of the building with its freight doors still intact, to no avail. I’ve reached out to the archivist at St. F.X. University, which does have a giant photo collection of Co-Op buildings, PEI included- to no avail. (One avenue I have not yet explored is to contact rails to trails and see if I could be allowed inside to see if the door framing is still visible.)

This information gap has mostly left me to fill in the blanks myself.

However, just this morning, I had a bit of an “ah-ha” moment.

I don’t know why this didn’t hit me before now, but I had already been aware of direct evidence that the co-operatives routinely shared building plans, being co-operatives and all. One such example is the Co-Op Potato Warehouses at Morell, Tignish and Souris being nearly identical.

Could the Vernon River Co-Op warehouse be a shortened version of these other warehouses?

IMG_1199

Morell’s Co-Op Warehouse. Year and photographer are unknown. St. F.X. University Archives.

20935076_1902309463423996_4088096629602011681_o.jpg

Souris Co-op Warehouse. Steve Hunter photo, year unknown.

IMG_1209 copy

Tignish’s Co-Op Warehouse. Year and photographer are unknown. Note that the building is nearly identical to Morell’s warehouse, a county away.

What caught my attention is how similar the front of the Morell warehouse looks to the front of the Vernon River warehouse. The large double door and loft door are of identical construction. The chimneys are similar. While in different locations, the man-door and window are of very similar structure. What we can see of the first freight door shows us that these doors are also very similar, if not identical, to the Morell warehouse.

To corroborate my theory, I took to Google Earth and went back in time to 2015, when the Morell warehouse still stood. Now, the two warehouses’ lengths obviously differ- we don’t need Google to tell us that, but I was most interested in finding out if the buildings were the same width.

I’ll be the first to tell you that Google Earth’s measurements aren’t always so accurate (they even admit this themselves). Still, I figured that if I measured the buildings from a satellite image taken on the same day, I’d be able to figure out if they were the same size.

What I came out with was this:
Morell warehouse= 43.24′ x 122.82′
Vernon River warehouse = 44.91′ x 82′

Given Google’s inaccuracies and satellite imaging variables, the widths are very close indeed. I’ll take that as a win.

So now we know that the Vernon River and Morell warehouses were, in all likelihood, the same width. The similar width dimension, look, owner, and use of the building make me feel comfortable using the Morell and Souris photos as a reference for the Vernon River build. The Morell and Souris photos, along with a scale drawing of the Morell warehouse Steve Hunter gave to me, will most certainly get me most of the way there.

Without a photo showing the Vernon River warehouse’s entire side, we don’t know how far apart the two freight doors were.

I can figure this out in two ways:
– Obtain permission to enter the warehouse as it stands today and see if the door framing is still visible from the inside.
– Measure the outside of the warehouse and use the 1958 air photo to scale out the door centres.
These methods will have to wait until the snow melts, but I’m happy having figured out the process I’ll have to follow.

One final question I may never have a firm answer on involves the relationship between the truck door and the foundation.

In the Souris, Tignish and Morell photos, the land is built up to the top of the foundation to meet the truck door- meaning the truck door doesn’t go through the foundation. However, in the Vernon River photos, it appears as if the foundation has been cut to allow for a taller truck door. The man door placement above the foundation caught my suspicion and made me believe that the ground was initially built-up like the other warehouses. For some reason, the door’s height needed to be increased, so the foundation was cut to allow for this.

As you can see in the 1981 Vernon River photo, it looks as if a whole new door frame has recently been installed and the earth around the foundation excavated. The man door remains above the foundation. Perhaps this is all the evidence I need.

After studying the images, I have concluded that it’s very likely that at some point, the foundation was cut to accommodate a taller truck door- most likely in the early 80s. Wouldn’t the man door be cut into the foundation if the building was initially built like this? I feel confident I can model the door as shown in the Morell photo, with it being accurate.

Unfortunately, I’ll have to wait until the spring to further this research as it requires a field visit. Still, I feel confident that I have most of the information I’ll need to scratch-build this building.

If you’ve stuck with me this long, thanks for reading.

CM

A sunny winter’s day prototype visit.

After Wednesday’s hangout with Taylor, Chris and David I was feeling pretty pumped about the direction of things.

That feeling was only amplified after a Saturday afternoon spent in New Brunswick operating on Doug Devine’s Island Central Railway and Steve McMullin’s Carelton railway.

Even though we we’re very much in the dead of winter here on Prince Edward Island, spring was definitely in the air this Sunday afternoon. I couldn’t resist making the first of what is likely to be many visits to the prototype location.

I can look at photos all day but to catch onto the feeling of the layout I really needed to get out to Vernon River its self and get an idea of how the land lays in 1:1.

Instead of photos, I thought it would be easier to just make a short video which you can find right here:

 

I will return when the snow melts and again in the summer. I plan to take many photos of the right of way,  trees, buildings, farmers fields and farm roads in the area to get a good idea of how I’ll model them.

C.M.

Scratch-building CN’s 40′ Wood End Bunker Reefers [PT:2 Doors and Corner Bracing]

 

IMG_1057

The car siding is now attached to the car’s core. .005 corner bracing and Grandt Line door hardware added.

After finally having some time to clean up my workbench I was able to continue with my scratch-build of CN’s 40′ Wood End Bunker Reefers.

Using a nibbler, I began by cutting the doors out of the car siding. I then glued the car siding to the body using a scale 6″ spacing jig I made to ensure a uniform 6″ of the core remained visible all along the bottom of the car. Since the car siding I used was .040″ I had to lay down a .020″ substrate into the door opening before I could install the framing. I framed the doors with 2×4″ HO scale Evergreen strip. 2×3″ HO scale strip was used for the eve above the door, 1×2″ HO scale strip was used to represent the gasket between the door and the doorframe and 2×10″ was used to represent the kicker plate below the door. The door its self was cut from .020″ Evergreen freight car siding. Grandt Line reefer hinges and door latches were used for the door hardware. I’m still waiting on a few Tichy detail parts that will complete the doors but they are about 90% finished.

IMG_1061

Close-up of the Grandt-Line door hardware.

After I finished with the door, I decided next I would notch out the sections of the under frame required to fit the coupler pockets. I installed Smoky Mountain coupler pockets in the cut-outs. I’m still not totally sold on this and may revert to the “scale” coupler pockets that come with Kadee #178, they aren’t as nice at the Smoky Mountain pockets but come closer to the look of the prototype. I will revisit this once I finish the under frame.

IMG_1014

A razor saw was used to cut through the frame. Much care was used to ensure I didn’t cut into the car siding. In hindsight it may have made more sense to cut these “notches” out before I installed the car siding over the core.

IMG_1015

A exacto knife with a brand new #11 blade was used to score along the bottom of the car siding. I used a screw driver to snap the cut pieces back.

Next I added the corner bracing on both the car body and the visible portion of the under frame. To accomplish this I cut scale 10″,6″ and 3″ strips from .005 styrene. For each corner brace I gently folded the strip over its self and then used my photo etch pliers to complete the fold- this way I got a nice crisp and straight fold. Using my NWSL Chopper II (absolutely essential for this task unless you want to cry) I then cut eight 10×12″ corner braces for the bottom of the body, eight 6×5″ corner braces for the visible portion of the under frame and sixteen 3×12″ corner braces for the upper portion of the car body.

IMG_0328

A NWSL Chopper II with the guide set to the proper length was used to ensure uniform cuts of the corner braces. The bent q-tip on the left was used to hold down the corner brace between the guide and the blade to ensure the corner brace didn’t move as it was cut.

IMG_0329

A bunch of cut out corner braces. I always make extra and use the best ones.

Next time I’ll start into the under-frame of the car, beginning with the installation of the truck bolsters. I was going to scratch build the bolsters but the Tichy ones are pretty close and already sit the car at the proper height.

After the bolsters I’ll install the Z stringers and fishbelly. The stringers will be made from strip styrene, glued together to make a Z shape. The fish belly under-frame will be cut from sheet styrene of a thickness yet to be decided.

I have some tricks up my sleeve for the brake rigging and the roof is already on my mind as well.

I’m really happy with how this build is progressing and I am picking up a lot of new skills along the way.

Until next time,

CM

Vernon River / Murray Harbour Subdivision traffic analysis [PT:2 Researching Traffic Amounts and Crunching the Numbers]

7751 on Murray Harbour Sub CN002589
44 Tonner #7751 leads a mixed train on the Murray Harbour Subdivision. #7751 was renumbered #2 June 1956. Photographer unknown. CSTM Collection (#CN002589)

In my previous post I used newspaper archives to determine and describe the types of traffic I thought Vernon River would normally see.

My goal is now to not only determine the amount of freight traffic Vernon River would see but to also determine the average train length, loads and percentage of originating vs terminating traffic on the Murray Harbor subdivision as a whole. Having these statistics will allow me to accurately model the car movement both through and at Vernon River.

This info is important for a few reasons, but mainly I need to be able to:

  • Determine in general terms the amount of switching moves per operating session
  • Determine to the average train length through Vernon River
  • Determine the usual ratio of originating to terminating cars
  • Use the above information to figure out how long the single track staging cassette will need to be on each side of the layout.

With the new Drive-By Truckers record on in the background, into the rabbit hole I went.

In my files I found a summary written by Shawn Naylor of a freight report CN completed in the early 1960s. Apparently this report was prepared to propose reductions in PEI’s rail service. In the report CN used carload data from the mid to late 1950s which makes it super conveniently accurate for my layout’s era.

Below I’ve created a spreadsheet of carload data as it applies to the Lake Verde, Vernon [Loop] and Murray Harbor subdivisions from this summary (the same mixed train #240N / #209S served these subdivisions.)

1958 Daily Carload Data: Lake Verde, Vernon [Loop], Murray Harbor Subdivisions

STATION

ORIGINATING CARLOAD / DAY

TERMINATING CARLOAD / DAY

TOTAL

Millview0.4NIL0.4
Vernon [Loop]0.51.01.5
Murray Harbor0.10.10.2
Mount Albion0.6NIL0.6
Other Lake Verde, Vernon and
Murray Harbor 
Subdivision Stations
2.00.72.7
TOTAL3.61.85.4
If you’re not familiar with island railroading it’s important to note that “Vernon” and “Vernon River” are two different locations. I’ve marked Vernon with [Loop] to make it less confusing.

Using the numbers on the chart it would be fair to say the average train could include around five freight cars- a pretty low key operation. Most photos I’ve seen reinforce this, showing on average zero – three freight cars plus the baggage and coach car. [With a train so small I should be able to get away with a 5ft staging cassette on each side of the layout]. Obviously not all of these cars would be destined for Vernon River. In fact, it probably wasn’t a daily occurrence that anything would even be switched there. For the sake of fun, my layout will only operate on days where there is an originating or terminating load for Vernon River.

Knowing the average train length I now need to know what types of freight we’d see on that train. Naylor’s summary includes traffic types for the Murray Harbor, Lake Verde and Vernon [Loop] subdivisions but the figures are irrevocably lumped together with the Montague and Georgetown subdivisons. I can live with that though- the Montague and Georgetown subdivisions would have seen pretty similar types of traffic. It shouldn’t distort our reality too much.

1958 Originating vs Terminating Carloads: Murray Harbor, Vernon [Loop] & Lake Verde Subdivisions:

  • Originating Carloads: 67%
  • Terminating Carloads: 33%

1958 Originating Carloads: Murray Harbor, Vernon [Loop], Lake Verde, Montague and Georgetown Subdivisions:

  • Potatoes: 57%
  • Turnips: 33%
  • Other: 9%
  • Livestock: 1% (Aprox 13 carloads per year)

1958 Terminating Carloads: Murray Harbor, Vernon [Loop], Lake Verde, Montague and Georgetown Subdivisions:

  • Other: 54%
  • Sand and Gravel: 27%
  • Fertilizer: 13%
  • Coal and Coke: 3% (Aprox 30 carloads per year)
  • Animal Feed: 2% (Aprox 27 carloads per year)
  • Petrol Products: 1% (Aprox 9 carloads per year)

In Naylor’s summary is it said that a contributing factor to PEI’s high operating costs was the need to use different cars for originating and terminating traffic; cars used to import things to the Island tended to leave empty. As such, local moves will range from very rare to non-existent on this layout.

With these statistics I now have a great foundation to base my layouts operations around. Even though I’m only modelling a single village, I think its important to consider the subdivision as a whole in order to serve my chosen village accurately. 

Now I just need to figure out how to work these averages and percentages into a car card system…

CM

 

REEFER MADNESS: Scratch-building CN’s 40′ Wood End Bunker Reefers [PT:1 Car Body]

CN 208571T.A. Watson photo, Ian Cranstone collection

CN Wood End Bunker Reefer #208571 (Series 3). Photo: nakina.net

Some time ago Steve Hunter showed me photos of his beautifully finished Norwest Models CN Wood End Bunker Reefer kits. This planted the seed for a small obsession with these wooden reefers built between 1926 and 1932.

Knowing that I would eventually need a few of these cars to compliment my fleet of F&C and True Line 8 Hatch Reefers (which will be regulars at the Vernon River Co-op warehouse!) I searched high and low for years for even just one Norwest Kit, to no success.

Armed with general arrangement drawings sourced from the C. Robert Craig Memorial Library and a copy of Railroad Model Craftsman (June 2001) featuring Stafford Swain’s wonderful article on this prototype I set out to begin scratch building a pair.

I began the preliminary work on the project by sourcing decals from Black Cat Publishing, trucks from Tahoe Model Works, 3D printed underslung charcoal heaters and liquidometers from Shapeways and many of the other detail parts and styrene stock I would require to complete the build.

By studying the drawings I determined that it might prove easiest to build the car body in three layers. A inner core, a main core and finally an outer layer of Evergreen freight car siding.  (All layers .040″)

  • The inner core would provide a solid foundation for the car’s floor to sit on which would be made from Evergreen V-Groove siding. This would be the main core to which the entire car would be built off of.
  • The main core’s purpose would be to simulate the 6 scale inches of steel under frame and would be cut 6 scale inches taller than the inner core to achieve this.
  • Finally, the outer layer of Evergreen freight car siding would be cut 6 scale inches shorter than the main core. The freight car siding would then be placed around the main core using a jig made from styrene to ensure a uniform 6 inches of the main core remained visible all the way around the model.

 

After constructing the inner and main cores, the next step was to cut the car siding to fit around the car body. Once I made the cuts I marked where the doors would be cut out. Using the previously mentioned jig I taped the siding to the car to test the look and to ensure everything lined up properly.

IMG_0967

4 car sides made of Evergreen freight car siding cut and marked for their door openings.

reeferbottomsides

This view shows what the siding will look like when finally glued to the car. This also shows the 6″ of the main core that represents the visible steel under frame of the prototype. Eventually Archer and Micromark rivet decals will be used to detail it.

IMG_0977

The spacing jig I made to ensure a uniform 6″ of the main core remains visible all the way around the bottom of the car body.

IMG_0974

Sitting on trucks just for fun, this car is starting to look a little less like a time consuming rectangle and more like a wooden reefer!

After a few failed attempts at cleanly cutting out the doors out of the car and subsequently having to cut out new sides I decided I needed a different approach.

Browsing around on a few different model railroading forums I came to the conclusion that a nibbler seems to be the way to go in regards to cutting square, clean doors (and windows) from sheet styrene when the standard #11 blade won’t do the job cleanly. With that knowledge I ordered one from Amazon and I should see it next week.

Sometimes I need to remind myself that it’s often best to tape a step back, take some time to plot the next move and then come back with a new approach and fresh mindset.

I hope to return to this build soon- when I finally have the door openings cut out and installed I will be able to turn my attention to the steel under frame.

I already have some ideas brewing.

CM