The ties that bind…

Ok. So, before the world exploded my focus in Vernon River land was more or less on preparing for the laying of ties, ballast and track.

For a man who hasn’t even laid flex track before, you could imagine how deep of a daunting rabbit hole this could be.

It has been my full intent since Day 1 with not only this project it’s-self, but my modelling as a whole to hand lay my track. It just seems like the right thing to do and nothing looks exactly like wood, but actual wood.

Instead of just going in blind and starting to lay track on my actual bench work I figured it might be fun / a good idea to teach myself this group of skills by building a display / test track.

So that’s what I did.

I ordered a “Ultimate Track Sample Starter Pack” with Code 55 rail and 8ft ties from Proto87, snagged a 1×3 that a buddy of mine had from his old deck, got some 1/2in extruded foam left over from a different buddy’s garage build and got to work.

I’ll go over the actual test track it’s self another time. What I want to show off here are my ties.

Hunter Hughson has a great post on Weathering Ties with Acrylic paints over at his blog that I more or less followed to a tee, and man am I ever happy with how they turned out. The only thing I changed from his process was how I went about beating up the ties. Instead of a dental pick, chisel tip and #7 Exacto blades I used a dental pick and wire brush at the suggestion of Chris Mears.

I had the idea to perhaps switch it up and represent a later era with my test track; say the late 70s or early 80s, where tie plates would be more prevalent on the prototype [AKA a excuse to use more of the beautiful Proto87 tie plates that came with the sample pack]. However, I’m leaning back to sticking with the late 50s. I’d still perhaps throw a couple tie-plates down here and there on newer looking ties.

Next up will be ballasting. If I stay with the late 50s it’ll be cinders, if I go with the late 70s / early 80s it’ll be a mix of crushed rock.

C.M.

Finding inspiration from a later era

IMG_1253.JPG

Loading potatoes at St. Peters Bay, PE – Late 60s 1970s? Jim MacKinnon collection.

While looking for photos of tractors on The Prince Edward Island Railway Facebook page, I came across this photo of a reefer being loaded with potatoes at St. Peters Bay.

The author of the post incorrectly labelled it as the 1950s, but as we know by the noodles on the boxcars, this is post-1961. Further, the American reefer car’s presence makes me believe it might even be the late 60s or 1970s.

While this photo isn’t within my era, it really strikes some inspiration. The railway on PEI had many public sidings or team tracks- but not many of them had permanent loading ramps. The public siding at Vernon River did not have a loading ramp.

This scene might as well be Vernon River. It would be a very similar scene. The farmer or merchant backs truck or trailer right up to the car, plywood ramp bridges the gap, potatoes are transferred across- probably a lot of the time “hand-bombed

.”

I am very grateful to find this picture. It will be used as a direct reference to develop the scene and the public siding.

As mentioned at the beginning of this post, I’ve in passing begun to research era-appropriate vehicles for the layout. My first purchase was an Alloy Forms 1947 Clark Forklift, which will live at the Co-Op Warehouse… I just need to figure out the proper colour to paint it.

I’ve mentioned this before to friends, and you may disagree, which is fine. Still, I really find that too many vehicles are the easiest way to break a layout’s realism. Luckily for my era, Route #3 wouldn’t have been nearly as busy as it is today, hell it probably hadn’t even been paved to long before- there won’t be any vehicles on it, and that won’t look out of place. I’m thinking a car or two parked at the station, a truck parked at the warehouse, a tractor and potato trailer along the siding and maybe an abandoned truck in the corner of a farmer’s field will be sufficient.

CM

Vernon River Co-Op Warehouse: a study on shared building plans.

IMG_1210

The former Vernon River Co-Op Warehouse built in 1947. July 2013. Chris Mears photo, used with permission.

Since the very conception of this layout, a mystery has been at the back of my mind. That is the mystery of the Vernon River Co-Op Warehouse.

I guess perhaps not as much of a mystery, as a minor annoyance. You see, the photos I have are only but a tease- only providing partial views of how this building looked while it was still rail-served.

There is one fact working for me, and that is that the building still stands today- rails to trails use it as a workshop. Having an accurately sized model will not be a problem.. however, its freight doors and roof vents have been removed, and the roof and siding have been replaced.

I’ve reached out to local area Facebook groups to try to find a better photo of the building with its freight doors still intact, to no avail. I’ve reached out to the archivist at St. F.X. University, which does have a giant photo collection of Co-Op buildings, PEI included- to no avail. (One avenue I have not yet explored is to contact rails to trails and see if I could be allowed inside to see if the door framing is still visible.)

This has mostly left me to fill in the blanks myself.

However, just this morning, I had a bit of an “ah-ha” moment.

I don’t know why this didn’t hit me before now, but I had already been aware of direct evidence that the co-operatives routinely shared building plans, being co-operatives and all. One such example of this is the Co-Op Potato Warehouses at Morell, Tignish and Souris being nearly identical.

Could the Vernon River Co-Op warehouse just be a shortened version of these other warehouses?

IMG_1199

Morell’s Co-Op Warehouse. Year and photographer are unknown. St. F.X. University Archives.

20935076_1902309463423996_4088096629602011681_o.jpg

Souris Co-op Warehouse. Steve Hunter photo, year unknown.

IMG_1209 copy

Tignish’s Co-Op Warehouse. Year and photographer are unknown. Note that the building is nearly identical to Morell’s warehouse, a county away.

What caught my attention is how similar the front of the Morell warehouse looks to the front of the Vernon River warehouse. The large double door and loft door are of identical construction. The chimneys are identical. While in different locations, the man-door and window are of very similar construction. What we can see of the first freight door shows us that these doors are also very similar, if not identical, to the Morell warehouse.

To corroborate my theory, I took to Google Earth and went back in time to 2015 when the Morell warehouse still stood. Now, the two warehouses’ lengths obviously differ- we don’t need Google to tell us that, but what I was most interested in was finding out if the buildings were the same width.

I’ll be the first person to tell you that Google Earth’s measurements aren’t always so accurate (they even admit this themselves). Still, I figured that if I measured the buildings from a satellite image taken on the same day, I’d be able to figure out if they were the same size.

What I came out with was this:
Morell warehouse= 43.24′ x 122.82′
Vernon River warehouse = 44.91′ x 82′

The widths are very close indeed, given Google’s inaccuracies and satellite imaging variables. I’ll take that as a win.

So now we know that the Vernon River and Morell warehouses were in all likelihood the same width. The similar width dimension, look, owner, and use of the building make me feel comfortable using the Morell and Souris photos as a reference for the Vernon River build. The Morell and Souris photos, along with a scale drawing of the Morell warehouse Steve Hunter gave to me, will most certainly get me most of the way there.

Without a photo showing the Vernon River warehouse’s full side, we don’t know how far apart the two freight doors were.

I can figure this out in two ways:
– Obtain permission to enter the warehouse as it stands today and see if the door framing is still visible from the inside.
– Measure the outside of the warehouse and use the 1958 air photo to scale out the door centres.
These methods will have to wait until the snow melts, but I’m happy having figured out the process I’ll have to follow.

One final question I may never have a firm answer on involves the relationship between the truck door and the foundation.

In the Souris, Tignish and Morell photos, the land is built up to the top of the foundation to meet the truck door- meaning the truck door doesn’t go through the foundation. However, in the Vernon River photos, it appears as if the foundation has been cut to allow for a taller truck door. The man door placement above the foundation caught my suspicion. It made me believe that the ground was initially built-up like the other warehouses, and for some reason, the door’s height needed to be increased, so the foundation was cut into to allow for this.

As you can see in the 1981 Vernon River photo, it looks as if a whole new door frame has recently been installed and the earth around the foundation excavated. The man door remains above the foundation. Perhaps this is all the evidence I need.

After studying the images, I have come to the conclusion that it’s very likely that at some point, the foundation was cut to accommodate a taller truck door- most likely in the early 80s. If the building was initially built like this, wouldn’t the man door be cut into the foundation? I feel confident I can create the door as shown in the Morell photo, with it being accurate.

Unfortunately, I’ll have to wait until the spring to go much further with this research as it requires a field visit. Still, I feel confident that I have most of the information I’ll need to scratch-build this building.

If you’ve stuck with me this long, thanks for reading.

CM

A sunny winter’s day prototype visit.

After Wednesday’s hangout with Taylor, Chris and David I was feeling pretty pumped about the direction of things.

That feeling was only amplified after a Saturday afternoon spent in New Brunswick operating on Doug Devine’s Island Central Railway and Steve McMullin’s Carelton railway.

Even though we we’re very much in the dead of winter here on Prince Edward Island, spring was definitely in the air this Sunday afternoon. I couldn’t resist making the first of what is likely to be many visits to the prototype location.

I can look at photos all day but to catch onto the feeling of the layout I really needed to get out to Vernon River its self and get an idea of how the land lays in 1:1.

Instead of photos, I thought it would be easier to just make a short video which you can find right here:

 

I will return when the snow melts and again in the summer. I plan to take many photos of the right of way,  trees, buildings, farmers fields and farm roads in the area to get a good idea of how I’ll model them.

C.M.

Vernon River / Murray Harbour Subdivision traffic analysis [PT:2 Researching Traffic Amounts and Crunching the Numbers]

7751 on Murray Harbour Sub CN002589
44 Tonner #7751 leads a mixed train on the Murray Harbour Subdivision. #7751 was renumbered #2 June 1956. Photographer unknown. CSTM Collection (#CN002589)

In my previous post I used newspaper archives to determine and describe the types of traffic I thought Vernon River would normally see.

My goal is now to not only determine the amount of freight traffic Vernon River would see but to also determine the average train length, loads and percentage of originating vs terminating traffic on the Murray Harbor subdivision as a whole. Having these statistics will allow me to accurately model the car movement both through and at Vernon River.

This info is important for a few reasons, but mainly I need to be able to:

  • Determine in general terms the amount of switching moves per operating session
  • Determine to the average train length through Vernon River
  • Determine the usual ratio of originating to terminating cars
  • Use the above information to figure out how long the single track staging cassette will need to be on each side of the layout.

With the new Drive-By Truckers record on in the background, into the rabbit hole I went.

In my files I found a summary written by Shawn Naylor of a freight report CN completed in the early 1960s. Apparently this report was prepared to propose reductions in PEI’s rail service. In the report CN used carload data from the mid to late 1950s which makes it super conveniently accurate for my layout’s era.

Below I’ve created a spreadsheet of carload data as it applies to the Lake Verde, Vernon [Loop] and Murray Harbor subdivisions from this summary (the same mixed train #240N / #209S served these subdivisions.)

1958 Daily Carload Data: Lake Verde, Vernon [Loop], Murray Harbor Subdivisions

STATION

ORIGINATING CARLOAD / DAY

TERMINATING CARLOAD / DAY

TOTAL

Millview0.4NIL0.4
Vernon [Loop]0.51.01.5
Murray Harbor0.10.10.2
Mount Albion0.6NIL0.6
Other Lake Verde, Vernon and
Murray Harbor 
Subdivision Stations
2.00.72.7
TOTAL3.61.85.4
If you’re not familiar with island railroading it’s important to note that “Vernon” and “Vernon River” are two different locations. I’ve marked Vernon with [Loop] to make it less confusing.

Using the numbers on the chart it would be fair to say the average train could include around five freight cars- a pretty low key operation. Most photos I’ve seen reinforce this, showing on average zero – three freight cars plus the baggage and coach car. [With a train so small I should be able to get away with a 5ft staging cassette on each side of the layout]. Obviously not all of these cars would be destined for Vernon River. In fact, it probably wasn’t a daily occurrence that anything would even be switched there. For the sake of fun, my layout will only operate on days where there is an originating or terminating load for Vernon River.

Knowing the average train length I now need to know what types of freight we’d see on that train. Naylor’s summary includes traffic types for the Murray Harbor, Lake Verde and Vernon [Loop] subdivisions but the figures are irrevocably lumped together with the Montague and Georgetown subdivisons. I can live with that though- the Montague and Georgetown subdivisions would have seen pretty similar types of traffic. It shouldn’t distort our reality too much.

1958 Originating vs Terminating Carloads: Murray Harbor, Vernon [Loop] & Lake Verde Subdivisions:

  • Originating Carloads: 67%
  • Terminating Carloads: 33%

1958 Originating Carloads: Murray Harbor, Vernon [Loop], Lake Verde, Montague and Georgetown Subdivisions:

  • Potatoes: 57%
  • Turnips: 33%
  • Other: 9%
  • Livestock: 1% (Aprox 13 carloads per year)

1958 Terminating Carloads: Murray Harbor, Vernon [Loop], Lake Verde, Montague and Georgetown Subdivisions:

  • Other: 54%
  • Sand and Gravel: 27%
  • Fertilizer: 13%
  • Coal and Coke: 3% (Aprox 30 carloads per year)
  • Animal Feed: 2% (Aprox 27 carloads per year)
  • Petrol Products: 1% (Aprox 9 carloads per year)

In Naylor’s summary is it said that a contributing factor to PEI’s high operating costs was the need to use different cars for originating and terminating traffic; cars used to import things to the Island tended to leave empty. As such, local moves will range from very rare to non-existent on this layout.

With these statistics I now have a great foundation to base my layouts operations around. Even though I’m only modelling a single village, I think its important to consider the subdivision as a whole in order to serve my chosen village accurately. 

Now I just need to figure out how to work these averages and percentages into a car card system…

CM

 

Modelling Vernon River c.1958

Hello and welcome to my brand new blog. This blog will document the research, planning and the eventual construction of this model railway.

After researching manny different Island prototypes (Cardigan, Charlottetown waterfront and Murray Harbor to name a few), I have settled on modelling Vernon River for my modular switching layout.

Here are a few points that helped me settle on Vernon River:

  • Vernon River scales out perfectly for a module. Switch to switch the village scales out to just under 6ft long. Measured across it comes in at about 2.25ft. This means I can model the railway buildings, track and landscaping with absolutely no compression while still having a 8 car public siding and a 3 car CO-OP warehouse siding. A prototype so small also affords me the option to have staging on both sides of the module. This should be more than enough to keep me entertained.
  • Only three switches and six or seven buildings means I can really take the time super detail the entire scene without getting totally hung up on the research (which is classic me.) I could hand lay every piece of track and scratch build every building if I wanted without having bit off way to much. It’s manageable.
  • Vernon River while small offers a lot of different types of traffic. Some examples of equipment that would be appropriate for this c.1958 prototype would include: reefer cars, stock cars, flat cars, coal cars, boxcars, boxcars with grain doors and potentially even the odd tank car.
  • Vernon River still had mixed train service in this era- hauled either by a GE 44 Tonner still in it’s black steam era paint scheme or by one or two GE 70 Tonners in the classic CNR green and gold scheme.

Stay tuned as I post my research and start to dig further into this awesome prototype.

-CM