Special delivery… (70 Tonner decals)

Just wanted to poke my head in and give a little mail-day update..

Backstory: Last fall I designed and 3D printed a accurate footboard assembly for my long-stalled Kaslo 70 Tonner project. This was a detail that had been bothering me for some time and I just couldn’t seem to get it right by scratch-building with styrene. This 3D printed part gets me over that hump, but in order to finish the project I still needed decals…

Receiving the test parts from Shapeways was the inspiration I needed to finally get off my behind and get decals made so I could finish the project.

STR21235a.001.aa.cs

CNR #38 at the Moncton, NB diesel shops. CSTM Collection.

Shortly before Christmas I began talks with Bill Brillinger from PDC.ca to make a custom set of decals for the ‘simplified’ second iteration of the green and gold livery the CNR 70 Tonners wore. I mailed him some reference material and to work he went.

After a few weeks of back and forth, I was very excited to see the PDC.ca envelope full of 70 Tonner decals arrive in my mailbox today.

IMG_1274.jpeg

As you can see, the decals turned out beautifully. Bill is an absolute joy to work with and he nailed what I was looking for. The decal set will do three locomotives with the ability to label any unit on the roster, although not all of them got this paint job.

While my super-detailed 44 Tonner will see lots of action on the layout, 70 Tonners were just as common and I’m excited to finish this project so I can run 70T #38 in mixed train service.

CM

Vernon River Co-Op Warehouse: a study on shared building plans.

IMG_1210

The former Vernon River Co-Op Warehouse built in 1947. July 2013. Chris Mears photo, used with permission.

Since the very conception of this layout, a mystery has been at the back of my mind. That is the mystery of the Vernon River Co-Op Warehouse.

I guess perhaps not as much of a mystery, as a minor annoyance. You see, the photos I have are only but a tease- only providing partial views of how this building looked while it was still rail-served.

There is one fact working for me, and that is that the building still stands today- rails to trails use it as a workshop. Having an accurately sized model will not be a problem.. however, its freight doors and roof vents have been removed, and the roof and siding have been replaced.

I’ve reached out to local area Facebook groups to try to find a better photo of the building with its freight doors still intact, to no avail. I’ve reached out to the archivist at St. F.X. University, which does have a giant photo collection of Co-Op buildings, PEI included- to no avail. (One avenue I have not yet explored is to contact rails to trails and see if I could be allowed inside to see if the door framing is still visible.)

This has mostly left me to fill in the blanks myself.

However, just this morning, I had a bit of an “ah-ha” moment.

I don’t know why this didn’t hit me before now, but I had already been aware of direct evidence that the co-operatives routinely shared building plans, being co-operatives and all. One such example of this is the Co-Op Potato Warehouses at Morell, Tignish and Souris being nearly identical.

Could the Vernon River Co-Op warehouse just be a shortened version of these other warehouses?

IMG_1199

Morell’s Co-Op Warehouse. Year and photographer are unknown. St. F.X. University Archives.

20935076_1902309463423996_4088096629602011681_o.jpg

Souris Co-op Warehouse. Steve Hunter photo, year unknown.

IMG_1209 copy

Tignish’s Co-Op Warehouse. Year and photographer are unknown. Note that the building is nearly identical to Morell’s warehouse, a county away.

What caught my attention is how similar the front of the Morell warehouse looks to the front of the Vernon River warehouse. The large double door and loft door are of identical construction. The chimneys are identical. While in different locations, the man-door and window are of very similar construction. What we can see of the first freight door shows us that these doors are also very similar, if not identical, to the Morell warehouse.

To corroborate my theory, I took to Google Earth and went back in time to 2015 when the Morell warehouse still stood. Now, the two warehouses’ lengths obviously differ- we don’t need Google to tell us that, but what I was most interested in was finding out if the buildings were the same width.

I’ll be the first person to tell you that Google Earth’s measurements aren’t always so accurate (they even admit this themselves). Still, I figured that if I measured the buildings from a satellite image taken on the same day, I’d be able to figure out if they were the same size.

What I came out with was this:
Morell warehouse= 43.24′ x 122.82′
Vernon River warehouse = 44.91′ x 82′

The widths are very close indeed, given Google’s inaccuracies and satellite imaging variables. I’ll take that as a win.

So now we know that the Vernon River and Morell warehouses were in all likelihood the same width. The similar width dimension, look, owner, and use of the building make me feel comfortable using the Morell and Souris photos as a reference for the Vernon River build. The Morell and Souris photos, along with a scale drawing of the Morell warehouse Steve Hunter gave to me, will most certainly get me most of the way there.

Without a photo showing the Vernon River warehouse’s full side, we don’t know how far apart the two freight doors were.

I can figure this out in two ways:
– Obtain permission to enter the warehouse as it stands today and see if the door framing is still visible from the inside.
– Measure the outside of the warehouse and use the 1958 air photo to scale out the door centres.
These methods will have to wait until the snow melts, but I’m happy having figured out the process I’ll have to follow.

One final question I may never have a firm answer on involves the relationship between the truck door and the foundation.

In the Souris, Tignish and Morell photos, the land is built up to the top of the foundation to meet the truck door- meaning the truck door doesn’t go through the foundation. However, in the Vernon River photos, it appears as if the foundation has been cut to allow for a taller truck door. The man door placement above the foundation caught my suspicion. It made me believe that the ground was initially built-up like the other warehouses, and for some reason, the door’s height needed to be increased, so the foundation was cut into to allow for this.

As you can see in the 1981 Vernon River photo, it looks as if a whole new door frame has recently been installed and the earth around the foundation excavated. The man door remains above the foundation. Perhaps this is all the evidence I need.

After studying the images, I have come to the conclusion that it’s very likely that at some point, the foundation was cut to accommodate a taller truck door- most likely in the early 80s. If the building was initially built like this, wouldn’t the man door be cut into the foundation? I feel confident I can create the door as shown in the Morell photo, with it being accurate.

Unfortunately, I’ll have to wait until the spring to go much further with this research as it requires a field visit. Still, I feel confident that I have most of the information I’ll need to scratch-build this building.

If you’ve stuck with me this long, thanks for reading.

CM

A sunny winter’s day prototype visit.

After Wednesday’s hangout with Taylor, Chris and David I was feeling pretty pumped about the direction of things.

That feeling was only amplified after a Saturday afternoon spent in New Brunswick operating on Doug Devine’s Island Central Railway and Steve McMullin’s Carelton railway.

Even though we we’re very much in the dead of winter here on Prince Edward Island, spring was definitely in the air this Sunday afternoon. I couldn’t resist making the first of what is likely to be many visits to the prototype location.

I can look at photos all day but to catch onto the feeling of the layout I really needed to get out to Vernon River its self and get an idea of how the land lays in 1:1.

Instead of photos, I thought it would be easier to just make a short video which you can find right here:

 

I will return when the snow melts and again in the summer. I plan to take many photos of the right of way,  trees, buildings, farmers fields and farm roads in the area to get a good idea of how I’ll model them.

C.M.

Testing the track plan.

A little update…

Taylor, David, Chris and myself got together in Taylor’s shop on a Wednesday evening and laid the paper plan out on the modules. It was nice to have some knowledgable friends on hand to help me properly orient the plan and decide where the staging cassettes would go.

Of course, with a huge plan on the table we just had to put some cars and switches on it to give it a bit of a “look” test.

Seeing this plan come to life is so exciting. I was really excited to see the track plan on the modules, but I got even more excited after I saw the track plan with the cars on top of it.

A lot of work lies ahead but I feel really great about how it’s all coming together. This layout really is going to be more than a nice thought, this is really happening.

I will have the paper plan reprinted to include the high-res 1958 air photo I purchased from Natural Resources Canada, after that it will be time to finalize the orientation of the staging cassettes..which means road bed isn’t far off.

Hopefully next weekend Taylor and I will be able to finish off the benchwork.

CM

Scratch-building CN’s 40′ Wood End Bunker Reefers [PT:2 Doors and Corner Bracing]

 

IMG_1057

The car siding is now attached to the car’s core. .005 corner bracing and Grandt Line door hardware added.

After finally having some time to clean up my workbench I was able to continue with my scratch-build of CN’s 40′ Wood End Bunker Reefers.

Using a nibbler, I began by cutting the doors out of the car siding. I then glued the car siding to the body using a scale 6″ spacing jig I made to ensure a uniform 6″ of the core remained visible all along the bottom of the car. Since the car siding I used was .040″ I had to lay down a .020″ substrate into the door opening before I could install the framing. I framed the doors with 2×4″ HO scale Evergreen strip. 2×3″ HO scale strip was used for the eve above the door, 1×2″ HO scale strip was used to represent the gasket between the door and the doorframe and 2×10″ was used to represent the kicker plate below the door. The door its self was cut from .020″ Evergreen freight car siding. Grandt Line reefer hinges and door latches were used for the door hardware. I’m still waiting on a few Tichy detail parts that will complete the doors but they are about 90% finished.

IMG_1061

Close-up of the Grandt-Line door hardware.

After I finished with the door, I decided next I would notch out the sections of the under frame required to fit the coupler pockets. I installed Smoky Mountain coupler pockets in the cut-outs. I’m still not totally sold on this and may revert to the “scale” coupler pockets that come with Kadee #178, they aren’t as nice at the Smoky Mountain pockets but come closer to the look of the prototype. I will revisit this once I finish the under frame.

IMG_1014

A razor saw was used to cut through the frame. Much care was used to ensure I didn’t cut into the car siding. In hindsight it may have made more sense to cut these “notches” out before I installed the car siding over the core.

IMG_1015

A exacto knife with a brand new #11 blade was used to score along the bottom of the car siding. I used a screw driver to snap the cut pieces back.

Next I added the corner bracing on both the car body and the visible portion of the under frame. To accomplish this I cut scale 10″,6″ and 3″ strips from .005 styrene. For each corner brace I gently folded the strip over its self and then used my photo etch pliers to complete the fold- this way I got a nice crisp and straight fold. Using my NWSL Chopper II (absolutely essential for this task unless you want to cry) I then cut eight 10×12″ corner braces for the bottom of the body, eight 6×5″ corner braces for the visible portion of the under frame and sixteen 3×12″ corner braces for the upper portion of the car body.

IMG_0328

A NWSL Chopper II with the guide set to the proper length was used to ensure uniform cuts of the corner braces. The bent q-tip on the left was used to hold down the corner brace between the guide and the blade to ensure the corner brace didn’t move as it was cut.

IMG_0329

A bunch of cut out corner braces. I always make extra and use the best ones.

Next time I’ll start into the under-frame of the car, beginning with the installation of the truck bolsters. I was going to scratch build the bolsters but the Tichy ones are pretty close and already sit the car at the proper height.

After the bolsters I’ll install the Z stringers and fishbelly. The stringers will be made from strip styrene, glued together to make a Z shape. The fish belly under-frame will be cut from sheet styrene of a thickness yet to be decided.

I have some tricks up my sleeve for the brake rigging and the roof is already on my mind as well.

I’m really happy with how this build is progressing and I am picking up a lot of new skills along the way.

Until next time,

CM

Vernon River / Murray Harbour Subdivision traffic analysis [PT:2 Researching Traffic Amounts and Crunching the Numbers]

7751 on Murray Harbour Sub CN002589
44 Tonner #7751 leads a mixed train on the Murray Harbour Subdivision. #7751 was renumbered #2 June 1956. Photographer unknown. CSTM Collection (#CN002589)

In my previous post I used newspaper archives to determine and describe the types of traffic I thought Vernon River would normally see.

My goal is now to not only determine the amount of freight traffic Vernon River would see but to also determine the average train length, loads and percentage of originating vs terminating traffic on the Murray Harbor subdivision as a whole. Having these statistics will allow me to accurately model the car movement both through and at Vernon River.

This info is important for a few reasons, but mainly I need to be able to:

  • Determine in general terms the amount of switching moves per operating session
  • Determine to the average train length through Vernon River
  • Determine the usual ratio of originating to terminating cars
  • Use the above information to figure out how long the single track staging cassette will need to be on each side of the layout.

With the new Drive-By Truckers record on in the background, into the rabbit hole I went.

In my files I found a summary written by Shawn Naylor of a freight report CN completed in the early 1960s. Apparently this report was prepared to propose reductions in PEI’s rail service. In the report CN used carload data from the mid to late 1950s which makes it super conveniently accurate for my layout’s era.

Below I’ve created a spreadsheet of carload data as it applies to the Lake Verde, Vernon [Loop] and Murray Harbor subdivisions from this summary (the same mixed train #240N / #209S served these subdivisions.)

1958 Daily Carload Data: Lake Verde, Vernon [Loop], Murray Harbor Subdivisions

STATION

ORIGINATING CARLOAD / DAY

TERMINATING CARLOAD / DAY

TOTAL

Millview0.4NIL0.4
Vernon [Loop]0.51.01.5
Murray Harbor0.10.10.2
Mount Albion0.6NIL0.6
Other Lake Verde, Vernon and
Murray Harbor 
Subdivision Stations
2.00.72.7
TOTAL3.61.85.4
If you’re not familiar with island railroading it’s important to note that “Vernon” and “Vernon River” are two different locations. I’ve marked Vernon with [Loop] to make it less confusing.

Using the numbers on the chart it would be fair to say the average train could include around five freight cars- a pretty low key operation. Most photos I’ve seen reinforce this, showing on average zero – three freight cars plus the baggage and coach car. [With a train so small I should be able to get away with a 5ft staging cassette on each side of the layout]. Obviously not all of these cars would be destined for Vernon River. In fact, it probably wasn’t a daily occurrence that anything would even be switched there. For the sake of fun, my layout will only operate on days where there is an originating or terminating load for Vernon River.

Knowing the average train length I now need to know what types of freight we’d see on that train. Naylor’s summary includes traffic types for the Murray Harbor, Lake Verde and Vernon [Loop] subdivisions but the figures are irrevocably lumped together with the Montague and Georgetown subdivisons. I can live with that though- the Montague and Georgetown subdivisions would have seen pretty similar types of traffic. It shouldn’t distort our reality too much.

1958 Originating vs Terminating Carloads: Murray Harbor, Vernon [Loop] & Lake Verde Subdivisions:

  • Originating Carloads: 67%
  • Terminating Carloads: 33%

1958 Originating Carloads: Murray Harbor, Vernon [Loop], Lake Verde, Montague and Georgetown Subdivisions:

  • Potatoes: 57%
  • Turnips: 33%
  • Other: 9%
  • Livestock: 1% (Aprox 13 carloads per year)

1958 Terminating Carloads: Murray Harbor, Vernon [Loop], Lake Verde, Montague and Georgetown Subdivisions:

  • Other: 54%
  • Sand and Gravel: 27%
  • Fertilizer: 13%
  • Coal and Coke: 3% (Aprox 30 carloads per year)
  • Animal Feed: 2% (Aprox 27 carloads per year)
  • Petrol Products: 1% (Aprox 9 carloads per year)

In Naylor’s summary is it said that a contributing factor to PEI’s high operating costs was the need to use different cars for originating and terminating traffic; cars used to import things to the Island tended to leave empty. As such, local moves will range from very rare to non-existent on this layout.

With these statistics I now have a great foundation to base my layouts operations around. Even though I’m only modelling a single village, I think its important to consider the subdivision as a whole in order to serve my chosen village accurately. 

Now I just need to figure out how to work these averages and percentages into a car card system…

CM

 

Vernon River / Murray Harbor subdivision freight traffic analysis [PT. 1 Researching Traffic Types]

With a prototype chosen it was time to dive a little further into my research.

My first goal was to figure out the types of freight traffic the village would see in a broad sense and not just my chosen era; after having that information I could then, through logic and evidence, figure out what would be applicable to my era.

One of the primary tools for the research job was islandnewspapers.ca. – “a fully-searchable online archive of PEI’s main newspaper of record, The Guardian, from 1890 to 1957.” This archive along with a document by Shawn Naylor that Steve Hunter passed to me a few years ago provided me with a wealth of information.

What I found was that Vernon River received quite a few different commodities ranging from general merchandise to mussel mud. Its main exports would have been produce (potatoes likely being the majority of this) and livestock (mainly hogs). 

I have compiled the following list of inbound and outbound traffic. Everything listed is based upon direct evidence (unless marked with a “*” or “**”) found in newspaper archives or in Naylor’s document. 

  • Outbound Traffic:
    • Produce (Potatoes, Turnips and other crops)
    • Livestock (mainly hogs but also cattle)
    • Finished Wood (*) (not likely in my era)
  • Inbound Traffic:
    • Animal Feed
    • Limestone
    • Fertilizer
    • Bulk Oats
    • Barley
    • Bulk Wheat
    • Fuel (**) (would oil and gasoline be pumped from tank cars into trucks to supply farmers with fuel?)
    • Coal (OCS and revenue)
    • Ties (OCS)
    • Mussel Mud (not likely in my era)

(*) Outbound loads of finished wood is a assumption at this point and only that. This is based on the existence of a saw mill about half a km away from the station. While I have not found any evidence to back up this assumption I don’t think it would be much of a stretch to consider them using the public siding to ship finished wood at some point. I have not found much information on the saw mill and it’s hard to tell in my air photos if it exists in a operational capacity in my era. 
(**) There is no evidence I have found of fuel being received at Vernon River. Would it be possible that fuel would be pumped from a tank car into a truck to deliver to farmers? The farmers had to get it somehow and even still by the late 1950s not all of the roads east of Charlottetown had been paved. I am genuinely not sure how this worked.

Based upon the list above its easy to imagine the types of rolling stock the village would have received, namely lots of reefers, boxcars and stock cars. 

Next time I will delve into the research of the daily amount of carloads both originating and terminating (along with their types) to try to get a sense of what a switching job at Vernon River consisted of.

Thanks for reading,
-CM

REEFER MADNESS: Scratch-building CN’s 40′ Wood End Bunker Reefers [PT:1 Car Body]

CN 208571T.A. Watson photo, Ian Cranstone collection

CN Wood End Bunker Reefer #208571 (Series 3). Photo: nakina.net

Some time ago Steve Hunter showed me photos of his beautifully finished Norwest Models CN Wood End Bunker Reefer kits. This planted the seed for a small obsession with these wooden reefers built between 1926 and 1932.

Knowing that I would eventually need a few of these cars to compliment my fleet of F&C and True Line 8 Hatch Reefers (which will be regulars at the Vernon River Co-op warehouse!) I searched high and low for years for even just one Norwest Kit, to no success.

Armed with general arrangement drawings sourced from the C. Robert Craig Memorial Library and a copy of Railroad Model Craftsman (June 2001) featuring Stafford Swain’s wonderful article on this prototype I set out to begin scratch building a pair.

I began the preliminary work on the project by sourcing decals from Black Cat Publishing, trucks from Tahoe Model Works, 3D printed underslung charcoal heaters and liquidometers from Shapeways and many of the other detail parts and styrene stock I would require to complete the build.

By studying the drawings I determined that it might prove easiest to build the car body in three layers. A inner core, a main core and finally an outer layer of Evergreen freight car siding.  (All layers .040″)

  • The inner core would provide a solid foundation for the car’s floor to sit on which would be made from Evergreen V-Groove siding. This would be the main core to which the entire car would be built off of.
  • The main core’s purpose would be to simulate the 6 scale inches of steel under frame and would be cut 6 scale inches taller than the inner core to achieve this.
  • Finally, the outer layer of Evergreen freight car siding would be cut 6 scale inches shorter than the main core. The freight car siding would then be placed around the main core using a jig made from styrene to ensure a uniform 6 inches of the main core remained visible all the way around the model.

 

After constructing the inner and main cores, the next step was to cut the car siding to fit around the car body. Once I made the cuts I marked where the doors would be cut out. Using the previously mentioned jig I taped the siding to the car to test the look and to ensure everything lined up properly.

IMG_0967

4 car sides made of Evergreen freight car siding cut and marked for their door openings.

reeferbottomsides

This view shows what the siding will look like when finally glued to the car. This also shows the 6″ of the main core that represents the visible steel under frame of the prototype. Eventually Archer and Micromark rivet decals will be used to detail it.

IMG_0977

The spacing jig I made to ensure a uniform 6″ of the main core remains visible all the way around the bottom of the car body.

IMG_0974

Sitting on trucks just for fun, this car is starting to look a little less like a time consuming rectangle and more like a wooden reefer!

After a few failed attempts at cleanly cutting out the doors out of the car and subsequently having to cut out new sides I decided I needed a different approach.

Browsing around on a few different model railroading forums I came to the conclusion that a nibbler seems to be the way to go in regards to cutting square, clean doors (and windows) from sheet styrene when the standard #11 blade won’t do the job cleanly. With that knowledge I ordered one from Amazon and I should see it next week.

Sometimes I need to remind myself that it’s often best to tape a step back, take some time to plot the next move and then come back with a new approach and fresh mindset.

I hope to return to this build soon- when I finally have the door openings cut out and installed I will be able to turn my attention to the steel under frame.

I already have some ideas brewing.

CM

Modelling Vernon River c.1958

Hello and welcome to my brand new blog. This blog will document the research, planning and the eventual construction of this model railway.

After researching manny different Island prototypes (Cardigan, Charlottetown waterfront and Murray Harbor to name a few), I have settled on modelling Vernon River for my modular switching layout.

Here are a few points that helped me settle on Vernon River:

  • Vernon River scales out perfectly for a module. Switch to switch the village scales out to just under 6ft long. Measured across it comes in at about 2.25ft. This means I can model the railway buildings, track and landscaping with absolutely no compression while still having a 8 car public siding and a 3 car CO-OP warehouse siding. A prototype so small also affords me the option to have staging on both sides of the module. This should be more than enough to keep me entertained.
  • Only three switches and six or seven buildings means I can really take the time super detail the entire scene without getting totally hung up on the research (which is classic me.) I could hand lay every piece of track and scratch build every building if I wanted without having bit off way to much. It’s manageable.
  • Vernon River while small offers a lot of different types of traffic. Some examples of equipment that would be appropriate for this c.1958 prototype would include: reefer cars, stock cars, flat cars, coal cars, boxcars, boxcars with grain doors and potentially even the odd tank car.
  • Vernon River still had mixed train service in this era- hauled either by a GE 44 Tonner still in it’s black steam era paint scheme or by one or two GE 70 Tonners in the classic CNR green and gold scheme.

Stay tuned as I post my research and start to dig further into this awesome prototype.

-CM